1 Overview of the Fields

The interactions between geometric modeling and algebraic geometry are driven by natural developments in each field. In algebraic geometry, it is the study of computational methods, particularly to analyze real varieties and applications, while in geometric modeling, it is the drive to develop more tools based on fundamental insight in constructive aspects of geometry.

The analytic and the constructive approach intersect in the study of parametric manifolds and implicit varieties and share the fundamental study of singularities (detection and analysis), intersection problems, and approximation methods with guarantees. Specific areas of overlap include the following three. (1) Determining intersections of these objects requires the computation of an implicit representation of the parametric object, a difficult algebraic problem. For the less general surfaces that arise in practice significantly more subtle methods are needed. These combine in a well-developed connection and flow of ideas between the subjects related to resultants and computation of syzygies. (2) A second area of interaction has been the characterization of Bézier curves and surfaces. Bézier curves and surfaces are ubiquitous in modeling of geometry in engineering and entertainment. They can be understood as algebraic varieties called toric varieties. Of recent interest are global geometric properties of surface pieces, called patches, such as convexity, smoothness, and approximation theoretic properties such as precision. Barycentric coordinate functions occur in different guises in both algebraic geometry and geometric modeling. (3) A third area of interaction concerns real roots of polynomial equations and in-equations, a central topic in algebraic geometry and the basis for constraint based definition of geometry in geometric modeling.

2 Recent Developments and Open Problems

- Support of fast and robust queries to accelerate intersection and half-space queries continues to be a hard problem.
- Resolving detail, both geometrically and in solving differential equations on the geometry, requires local refinability. The linear-algebraic and approximation-theoretic characterization of locally refinable spaces continues to be a challenge.
- Some of the most powerful solvers for determining real roots of multi-variate systems of equations are based on refining the control net of the Bernstein-Bézier form. Aligning refinement with the zero set continues to be a challenge.
Generalized coordinates enable a smooth distribution of properties over complicated domains. However, not even a full characterization of Wachspress generalized coordinate threefolds is known.

3 Presentation Highlights

The presentations were captured in 19 video contributions. Among the highlights were an evening talk by Tom Sederberg, a pioneer in combining algebraic geometry and geometric modeling. Tom Sederberg shared lessons he learned in commercializing a computer-aided design technology. Chandrjit Bajaj and the many participants whose life had been touched by the late Shreeram Shankar Abhyankar at Purdue shared a retrospective of Abhyankar’s life and work. Abhyankar who was instrumental in fostering the first interactions between the two subjects of the workshop. There were also two visually appealing talks related to architecture by Helmut Pottmann and Kristoffer Josefsson. Helmut Pottman’s talk was about mathematical challenges in designing free-form structures while Josefsson discussed industrial projects at Foster+Partners.

Here are abstracts of two of these presentations.

Helmut Pottmann (King Abdullah University of Science and Technology)

Structures from Circular Arcs

Abstract: We present novel structures which are composed of circular arcs and are motivated by potential applications in architecture: Looking for remarkable spatial designs from circles, we investigate the families of circles on Darboux cyclides and show how they can be arranged in form of hexagonal webs. Moreover, we discuss meshes whose edges are circular arcs and all whose nodes are congruent. Finally, we briefly address the kinematics of arc splines and illustrate how it can be used for surface design, surface approximation and non-static architecture.

Tom Sederberg (Bringham Young)

Lessons Learned while Commercializing a CAD Technology

Abstract: The press release for this workshop states, “These applications of geometric modeling to computer-aided geometric design and computer graphics are profoundly important to the world economy.” My understanding of what that means has become more clear because of the experience I have had over the past nine years of working with some former students to commercialize a new CAD technology called T-splines. I discuss the challenges of such an endeavor and express some thoughts of the role that the underlying math plays in the overall commercialization effort.

Several common themes emerged from the presentations at this meeting. In the following subsections, we organize abstracts of presentations by those categories.

3.1 Exploration and characterization of new locally refinable spaces.

Tor Dokken (SINTEF, Oslo)

Locally Refined B-splines and Linear Independence

Abstract: We will address local refinement of a tensor product grid specified as a sequence of inserted line segments parallel to the knot lines. The line segments are assigned multiplicities to model the continuity across each line segments individually. We obtain a quadrilateral grid with T-junctions in the parameter domain, and a collection of tensor product B-splines on this mesh here named an LR-mesh. The approach applies equally well in dimensions higher than two. By refining according to a hand-in-hand principle between the dimensions of the spline space over the LR-mesh, the spline space spanned by the Locally Refined B-splines and the number of locally refined B-splines the LR B-splines are linear independent and form a basis. Alternatively linear independence is not check during refinement, but the “pealing algorithm” is used to check if the resulting collection of LR B-splines is linear independent.

Falai Chen (University of Science and Technology of China)

Modified T-Splines

Abstract: T-splines generalize NURBS surfaces, the control meshes of which allow T-junctions. T-splines can significantly reduce the number of superfluous control points in NURBS surfaces, and provide valuable operations such as local refinement and merging of B-spline surfaces in a consistent framework. We propose a variant called modified T-splines. The basic idea is to construct a set of basis functions for a given T-mesh
that have the following nice properties: non-negativity, linear independency, partition of unity and compact support. The basis functions are constructed as linear combinations of the B-spline basis functions over the extended tensor product mesh of the given T-mesh. Due to the good properties of the basis functions, the Modified T-splines are favorable both in adaptive geometric modeling and iso-geometric analysis.

Jiansong Deng (University of Science and Technology of China)

Spline Spaces over T-meshes

Abstract: A T-mesh is a rectangular grid that allows T-junctions. Some types of spline spaces over T-meshes have been considered in the literature, including hierarchical B-splines, T-splines and LR splines. I will explain why we need T-meshes and how to define spline spaces over T-meshes. I will introduce a new type of spline space over T-meshes and give dimension formulae and basis function construction. Applications in computer graphics, image processing and isogeometric analysis are reviewed as well.

Bernard Mourrain (INRIA Sophia-Antipolis)

Spline spaces on planar and volume subdivisions

Abstract: We will consider spline functions over a partition of a domain and describe algebraic techniques to analyze the dimension of these spaces and bases. Different examples for planar meshes including T-mesh and triangular meshes will be discussed. Extension to 3D will discussed in relation with some conjectures in algebraic geometry.

Jorg Peters (University of Florida)

Refinability of splines derived from regular tessellations

Abstract: Splines can be constructed by convolving the indicator functions of a cell whose shifts tessellate \(\mathbb{R}^d \). This paper presents simple, non-algebraic criteria that imply that, for regular \(s \), only a small subset of such spline families yield nested spaces: primarily the well-known tensor-product and box splines. Among the many non-refinable constructions are hex-splines and their generalization to the Voronoi cells of non-Cartesian root lattices.

3.2 Implicit and semi-implicit representations of geometry

Laurent Busé (INRIA Sophia Antipolis)

Matrix representations of parameterized curves and surfaces

Abstract: In geometric modeling, parameterized curves and surfaces are used intensively. To manipulate them, it is useful to have an implicit representation, in addition to their given parametric representation. Indeed, a parametric representation is for instance well adapted for visualization purposes whereas an implicit representation allows significant improvements in the computation of intersections. Nevertheless, implicit representations are known to be very hard to compute. To overcome this difficulty, general matrix-based implicit representations of parameterized curves and surfaces (hereafter called *matrix representations*) will be discussed, as well as their application to intersection problems in geometric modeling.

Roughly speaking, a matrix representation consists in a matrix depending on the implicit variables and whose rank drops exactly on the associated parameterized object. We will first describe a very simple method to compute these matrix representations. They can be seen as an extension of the method of moving lines and moving surfaces that has been initiated by Sederberg and Chen in the case of plane curves. Indeed, matrix representations are in general *singular matrices* whereas the method of moving lines and surfaces was developed with the constraint of building a non-singular matrix. The gain of this extension is that matrix representations are valid for a dramatically larger class of parameterized curves and surfaces, actually any parameterized curves (including space curves) and almost all parameterized surfaces. Moreover, these matrix representations allow to treat intersection problems with some classical and well established tools of numerical linear algebra (such as the singular value decomposition and generalized eigenvalues computations), opening in this way the door to a more stable and robust numerical treatment of intersection problems.

In the second part we will show that matrix representations also contain a lot of geometric properties of their associated parameterization. Indeed, we will show that the inversion problem can be solved very simply with a matrix representation. More generally, we will show that many properties of the singularities of a parameterization can be described from its matrix representations. This can be seen as an extension of
the notion of *singular factors* introduced by Chen, Goldman and others for plane curves to the case of space curves and surfaces.

Xuhui Wang (Rice University)

µ-Bases for Complex Rational Curves

Abstract: We present a fast algorithm for finding a µ-basis for any rational planar curve that has a complex rational parametrization. We begin by identifying two canonical syzygies that can be extracted directly from any complex rational parametrization without performing any additional calculations. For generic complex rational parametrizations, these two special syzygies form a µ-basis for the corresponding real rational curve. In those anomalous cases where these two canonical syzygies do not form a µ-basis, we show how to quickly calculate a µ-basis by performing Gaussian elimination on these two special syzygies. We also present an algorithm to determine if a real rational planar curve has a complex rational parametrization. Examples are provided to illustrate our methods.

Carlos D’Andrea (University of Barcelona)

Rational Plane curves with µ = 2

Abstract: We describe sets of minimal generators of the defining ideal of the Rees Algebra associated to the ideal of three bivariate homogeneous polynomials parametrizing a proper rational curve in projective plane, having a minimal syzygy of degree 2.

3.3 Multivariate Roots

Gershon Elber (Technion)

Multivariate (Geometric) Constraints Solving using Subdivision based Solvers

Abstract: We explore a subdivision based paradigm to solve a set of (piecewise) rational constraints represented by (piecewise) rational multivariate spline functions. While the basic approach is robust, it can also be slow. We examine and survey several recently presented schemes to alleviate these computational costs. The addition of inequality filters, single solution isolation techniques, orthogonalization and domain reduction, and the minimization of the memory explosion that results from the exponential dependency on the number of variables will be discussed.

With this machinery, we will demonstrate that this type of solvers can be successfully used to solve a large variety of (geometric) problems above the (piecewise) rationals domain. This set of problems includes point-curve and curve-curve bi-tangents, convex hulls and kernels of planar curves and 3-space surfaces, ray-traps (bouncing billiard balls) between planar curves, the 10th Apollonius problem (a circle tangent to given three circles) and its generalization, bounding circles and spheres, bisectors and Voronoi regions, mold design, visibility and accessibility, sweeps and envelopes, and self-intersection computation and trimming in offset approximations of curves and surfaces.

Minho Kim (University of Seoul)

GPU Isosurface Raycasting of Volume Datasets Based On Box-Splines

Abstract: I will discuss the techniques for GPU isosurface volume raycasting on the BCC and FCC datasets reconstructed by box-splines. The six-direction cubic box-spline and the seven-direction quartic box-spline are used for reconstruction of FCC and BCC datasets, respectively. For real-time isosurface raycasting, the evaluation procedures should be optimized for graphics hardware. Specifically, conditional branches and lookup tables, which are natural choices for implementation, need to be avoided. Other techniques for performance improvements and fast and accurate normal computation are also discussed. The results show both performance and quality improvements compared to previous compatible methods.

Ileana Streinu (Smith College)

Algebraic equations with real roots arising in Origami design

Abstract: In mid 1990’s, Robert Lang proposed a beautiful and very original method for designing origami shapes with an underlying metric tree structure and implemented it in a freely available software called TreeMaker. Lang’s method takes as input the metric tree and a polygonal region (the “piece of paper”). It starts with a non-linear optimization phase which—when successful—produces a decomposition into special
convex pieces (which we call Lang polygons) of the input region. The second phase computes crease patterns for the Lang polygons. The main bottleneck in the applicability of Lang’s method is the first phase, which often fails: how can that be avoided?

I will show that the optimization phase can be replaced by the construction of a very special Lang polygon directly from the input tree, and this can be achieved by setting up a system of algebraic equations that can be solved inductively. For the base case, we get a single equation whose coefficients are (some of) the standard symmetric functions expressed in terms of the edge lengths of the tree. I will show that all the roots of this system are real, but only one—the largest, which is positive—is relevant for the origami design problem. An inductive argument then shows the existence of a real solution for the entire system. Along the way, I will relate the solutions of this algebraic system to the intrinsic curvature of a piecewise linear surface (the folded origami) and to the medial axis of the resulting convex polygon.

3.4 Toric structures and generalized coordinates

Luis Garcia (Sam Houston State University)

The control polyhedron of a rational Bezier surface

Abstract: Algebraic geometry investigates the algebraic and geometric properties of polynomials. Geometric modeling uses polynomials to build computer models for industrial design and manufacture from basic units, called patches, such as, Bezier curves and surfaces. Bezier curves are governed by their control points. The polygon formed by connecting the control points with line segments is called the control polygon. This polygon is unique and determines many important features of the curve, thus validating its name.

A Bezier surface is also intuitively governed by control points; in particular, the surface lies within the convex hull of its control points. This convex hull is often indicated by drawing some edges between the control points, the resulting structure is called a “control mesh”. Unlike curves, there is no unique choice of control mesh for a surface. So it is not clear in which way these meshes “control” the Bezier surface. We will present one possible answer to this question. Our results rely upon the geometry of toric varieties.

R. Krasauskas and S. Zube (Vilnius University)

Clifford-Bezier curves and surfaces

Abstract: We survey several cases of quaternion and geometric (Clifford) algebra based generalizations of Bezier curves and surfaces which were recently introduced into geometric modeling:
- complex curves on the plane,
- quaternion representation of principal Dupin cyclide patches with Willmore energy formulas,
- general bilinear quaternionic patches of Darboux cyclides (with up to 6 families of circles),
- a parallel theory of isotropic cyclides based on geometric algebra over the isotropic space \mathbb{R}^3 with signature $++0$.

All these constructions are invariant with respect to certain groups of classical geometric transformations, e.g. Moebius or Laguerre transformations, so they are naturally related to specific kinds of rational surfaces that are important to geometric modeling, e.g. Pythagorean-normal surfaces. We introduce the concept of Clifford-Bezier curves and surfaces, with the aim to unify various before mentioned constructions. Finally we will discuss existing and potential applications, and natural limits of this approach.

Ragni Piene (University of Oslo)

Higher order self-dual toric varieties

Abstract: A lattice point configuration $A \subset \mathbb{Z}^n$ defines a (real or complex) toric embedding in \mathbb{P}^N, where $N = \# A - 1$. We want to characterize those varieties that are isomorphic to one of its higher order dual varieties, in particular find conditions on the configuration A or its convex lattice polytope $P = \text{Conv}(A)$ for this to happen. This generalizes previous work by Bourel, Dickenstein, Rittatore in the case of ordinary self dual toric varieties.

Scott Schaefer (Texas A&M University)

Generalized Barycentric Coordinates

Abstract: We explore the motivation and development of generalized barycentric coordinates. Starting from Wachspress’s 2D construction, we show generalizations to arbitrary dimension, smooth shapes, and newer
generalizations of barycentric coordinates. We give a new construction for a family of barycentric coordinates for arbitrary 2D shapes and hints at the possibility of a closed-form construction for positive coordinates for arbitrary shapes.

Hal Schenck (University of Illinois, Urbana-Champaign)

Geometry of Wachpress surfaces

Abstract: Wachpress barycentric coordinates are a generalization of the usual barycentric coordinates for a simplex to a non-simplicial polytope, and were introduced by Wachpress some 30 years ago in his work on finite elements. In general they are not unique, but Warren showed that they are unique if we require minimal degree coordinates. We study the Wachpress coordinates for a convex polygon with \(d\) vertices, and interpret them as a rational map from the projective plane to projective \(d-1\) space. We prove the image is a smooth surface, and obtain an explicit description of the equations defining the surface (they are quadrics and cubics). We also determine a number of interesting algebraic invariants (Grobner basis, Castelnuovo-Mumford regularity, graded betti numbers) associated to the surface. This involves a connection to combinatorics via a Stanley-Reisner ideal.

3.5 Singularities

Chandrajit Bajaj (University of Texas)

Geometric Modeling Tales Born from Two Sciences: Algebra & Geometry

Abstract: I shall describe the solution to two problems where conversant knowledge of algebra & geometry paves the way for computational efficient solutions in geometric modeling.

First, through the use of the theory of polyhedral symmetric groups, root systems, and their extensions, one is able to generate all regular and semi-regular symmetric tilings (tesselations) of a sphere. This characterization enables a 6D parameterization of the search space via symmetric decorations of periodic and aperiodic planar tilings, and thereby the first polynomial time solution to automated prediction and design of 3D shell assemblies of varying sizes. Moreover, this theory provide a generalized subdivision procedure for spherical polyhedra, wherein increased facet complexity preserves local symmetries.

In a second brief tale, I’ll show how desingularization theory of algebraic curves, and especially the constructive application of monoidal transformations to blowup a singularity, allows for a general procedure to achieve robust numerical quadrature/cubature of singular/hyper singular integrands (kernels). I’ll show how effective use of this provides for a stable solution of the boundary derivative solutions of the Poisson-Boltzmann equation using algebraic splines in an isogeometric sense.

Bert Jüttler (JKU Linz)

Derivatives of isogeometric test functions

Abstract: We discuss the representation of the test functions in Isogeometric Analysis (IgA). IgA is a numerical method that uses the NURBS-based representation of a CAD model to generate the finite-dimensional space of test functions which is used for the simulation. More precisely, the test functions are obtained by composing the inverse of the domain parametrization (also called the geometry mapping) with the NURBS (rational B-spline) basis functions. We derive a representation of the derivatives of these test functions in NURBS form. More precisely, given a (possibly piecewise) rational geometry mapping and a rational test functions defined on it, we present a method to compute the derivatives of the test functions with respect to the global coordinate system. The derivatives are again given as a rational function defined on the rational geometry mapping. All computations can be described compactly using homogeneous coordinates. We then use these results to derive conditions on the isogeometric test functions which guarantee \(C_k\) smoothness, in particular for the interesting case of singularly parametrized domains. The conditions depend heavily on the given geometry mapping. We present \(C_0\), \(C_1\) and \(C_2\) smoothness results for a special class of singularly parametrized domains and compare them with existing \(H_1\) and \(H_2\) regularity results. The framework can be applied to all types of singularities and to derivatives of higher order.

Jianmin Zheng (Nanyang Technological University)

Foldover-free surface reparameterization with hard constraints

Abstract: We present an algorithm for surface reparameterization by constructing a foldover-free 2D triangular mesh transformation subject to hard positional constraints. The method is based on iterative RBF-based
warping and a subdivision scheme. It is shown to always work and have low distortion. We show one application of the algorithm in surface texture mapping.

Wenping Wang (Univ. of Hong Kong)

All-hex Meshing Using Singularity-restricted Field

Abstract: I shall present in a new method for computing an all-hex mesh of a 3D volume. Decomposing a volume into high-quality hexahedral cells is a challenging task in geometric modeling and computational geometry. Inspired by the recent use of frame fields in quad meshing and the CubeCover approach to hex meshing, we present a complete all-hex meshing framework based on the singularity-restricted field that induces a valid all-hex structure. Given a volume represented by a tetrahedral mesh and a 2D frame field on its boundary surface, we first compute a boundary-aligned 3D frame field inside it, then convert the frame field to be singularity-restricted by novel topological operations, and finally use the CubeCover method to compute the volume parametrization. Experimental results show that our algorithm is capable of generating high-quality all-hex meshes of a variety of 3D volumes robustly and efficiently.

3.6 Other presentations

Ciprian Borcea (Rider University,)

Volume frameworks and deformation varieties

Abstract: Like their kindred bar-and-joint frameworks, volume frameworks may lead to interesting deformation spaces. We explore singularities and deformation varieties for cyclic volume frameworks associated to polygons, with particular regard to heptagons and K3 surfaces.

Ming C. Lin (UNC)

Roles of Algebraic Geometry in Physics-based Simulation

Abstract: From turbulent fluids to granular flows, many phenomena observed in nature and in society show complex emergent behavior on different scales. The modeling and simulation of such phenomena continues to intrigue scientists and researchers across different fields. Understanding and reproducing the visual appearance and dynamic behavior of such complex phenomena through simulation is valuable for enhancing the realism of virtual scenes and for improving the efficiency of design evaluation. This is especially important for applications, where it is impossible to manually animate all the possible interactions and responses beforehand. In this talk, we discuss the roles and applications of algebraic geometry used in geometric modeling of complex surfaces to solving inequality arising from various constraints in simulating such phenomena. Some of the example dynamical systems that I will describe include turbulent fluids, deformable tissues, granular flows, and crowd simulation. I conclude by discussing some research challenges in algebraic geometry and geometric modeling for physics-based simulation.

Stephen Mann (University of Waterloo)

Error in Multivariate Polynomial Interpolation

Abstract: One approach to multivariate data interpolation is to select a polynomial basis, construct a Vandermonde matrix for the basis and data points, where the inverse of this matrix gives the polynomial coefficients of the interpolant. In this talk, we show that any fixed choice of basis has corresponding sets of data that result in poor approximations in the interpolant. In particular, we point out that approximation power is lost when data points a near common zero’s of this fixed basis, and we explain why schemes such as the Least usually produce good interpolants.

Gregory G. Smith (Queen’s University)

Nonnegative sections and sums of squares

Abstract: A polynomial with real coefficients is nonnegative if it takes on only nonnegative values. For example, any sum of squares is obviously nonnegative. For a homogeneous polynomial with respect to the standard grading, Hilbert famously characterized when the converse statement hold, i.e. when every nonnegative homogeneous polynomial is a sum of squares. In this talk, we will examine this converse for homogenous polynomials with respect to a positive multigrading. In particular, we will provide many new examples in which every nonnegative homogeneous polynomial is a sum of squares.
Gabriel Taubin (Brown University)
Non-Convex Hull Surfaces

Abstract: We present a new algorithm to reconstruct an approximating watertight surface from a finite oriented point cloud sampled from the smooth boundary surface of a solid object. The Convex Hull (CH) of an arbitrary set of points is the intersection of all the supporting linear half spaces. The CH boundary surface is piecewise linear and watertight, but since it cannot represent concavities, it is usually a poor approximation of the sampled surface. We introduce the Non-Convex Hull (NCH) of an oriented point cloud as the intersection of complementary spherical half spaces; one per point. The boundary surface of this set is a piecewise quadratic interpolating surface, which can also be described as the zero level set of the NCH Signed Distance function. Instead of developing a combinatorial algorithm to reconstruct this Non Convex Hull Surface as a union of quadratic and linear patches, we evaluate the NCH Signed Distance function on the vertices of a volumetric mesh, regular or adaptive, and generate an approximating polygonal mesh for the NCH Surface using an isosurface algorithm. Despite its simplicity, this naïve algorithm produces high quality polygon meshes competitive with those generated by state-of-the-art algorithms. It is able to deal with moderate irregular sampling, and it is massively parallelizable. Since interpolating surfaces are not always desirable, we also propose an octree-based sampling scheme to construct a bounded-error approximating NCH Signed Distance function, which significantly speed-up the computation, but can produce meshes of the same quality.

4 Scientific Progress Made

- New μ-bases and matrix representation promise to reduce the computational burden of computing implicit representations of parametric curves and surfaces and intersection testing.
- T-splines and LR splines are addressing localized refinement of piecewise polynomial and rational spaces.
- A variety of techniques, inequality filters, single solution isolation techniques, orthogonalization and domain reduction have been shown to speed up robust subdivision based solvers for determining real roots.
- The image of generalized Wachspress coordinates has been analyzed in the planar case and shown to be isomorphic to the image of the projective plane, blown up at certain points, and this has led to a complete description for the vanishing ideal of the image.

5 Outcome of the Meeting

Up to this workshop, members of the communities rarely interacted as a larger group. A key outcome of the meeting was a broader understanding of the other field and the recognition of new tools and connections. We include some testimonials from participants in which they describe developments in their research that may be traced to the BIRS workshop.

Tatyana Sorokina:
I just submitted a paper that uses a combination of algebraic geometry methods and classical Bernstein-Bézier tools. The paper [10] is written in collaboration with an algebraist, Alexei Kolesnikov, who watched most of the BIRS lectures online and got interested. In the summer, in collaboration we were able to obtain funds for an undergraduate research project on the use of algebraic geometry methods in approximation theory [5]. We have four students working on it. They will be presenting their first results during the joint meeting in Baltimore, January 2014. The titles are Larry Allen: Dimension of Smooth Bivariate Splines on Hexagonal Partitions, Rachael Mady: Multiplication of Polynomials in Bernstein-Bézier Form.

Hal Schenck:
This workshop was wonderfully productive. During the workshop, a collaboration to find higher dimensional analogs of the result of [8] began. The main point is that one can extend barycentric coordinates from a simplex to a general polytope, due to results of Wachspress, Warren, and others. This generalization is very useful in geometric modeling, and a fundamental question is to find the algebraic relations on the (rational functions which define) Wachspress barycentric coordinates. The collaboration continued with a meeting of
the participants (Irving, Schenck, Smith, Sottile) at MSRI in March. For the case of surfaces, the results of [8] rely on blowups of the projective plane at points, along with results on Stanley-Reisner rings. In higher dimensions the situation is much more subtle; for example Wachspress surfaces are all smooth, whereas Wachspress three-folds rarely are. The project is moving forward, and we plan to submit a proposal for a small research working group (RiP at Oberwolfach, or SQuaRES at AIM) to accelerate the process.

FaLai Chen:
I gave a talk on modified T-splines. Recently, we are considering constructing local refinable splines with good properties, e.g., positivity, partition of unity, compact support, nested property, etc. For splines over rectangular T-meshes, we already have hierarchical B-splines, PHT-splines, LR-splines, and truncated hierarchical B-splines [6, 15, 14, 2, 3, 7]. However, none of these these splines have a natural control mesh. Recently, I have been working to construct local refinable splines that have a natural control mesh (in the same way as B-splines).

R Krasauskas and S Zube:
Results inspired by BIRS Workshop are related to Quaternionic-Bézier (QB) and Clifford-Bezier (CB) formulas and their applications:
–representation of principle Dupin cyclide patches as special bilinear QB-surfaces; derivation of main classical properties of Dupin cyclides using these quaternion formulas [18]. Generalization to Dupin volumes (bounded by 6 principal Dupin patches intersecting orthogonally).
–QB-surfaces in \(\mathbb{R}^3\) can be generalized to CB-surfaces in any dimensions. This extends the previous constructions to any dimensions and any signatures of ambient space. Applications include Bezier curves and surfaces in the conformal model of Euclidean space, bilinear Clifford-Bezier patches on isotropic cyclides, and rational offset surface modeling [12]
–Möbius invariance of QB-surfaces can be used for visualization of Moebius transformations in \(\mathbb{R}^3\). The idea is to represent Moebius transformations in a quaternionic form as well, and to use GPU shaders for transforming control points and weights, then seamlessly stitching patches with different levels of detail. This approach was realized using WebGL technology in [9].

C. Bajaj:
Ties in molecular structures arise from insufficient/noisy imaging acquisition data, simplifications/assumptions in inverse structure modeling and approximations in numerical structure determination methods. Currently different schemes are used to estimate such uncertainties and the confidence in the accuracy of the predicted molecular structure model. Since the BIRS workshop I've been inspired and have initiated work on developing a statistical framework to quantify the errors/uncertainties propagated in molecular structure determination from imaging and predictive molecular modeling such as docking and assembly pathways. The uncertainty quantification is obtained using both low discrepancy quasi Monte Carlo sampling and the construction of Chernoff like bounds, a proof certificate with bounded ”low” probability that the distance between the predicted model and the expected/true model being larger than a certainty threshold.

Jianmin Zheng:
Constructing a valid mesh embedding satisfying a set of positional constraints is known to be a challenging problem. [4, 11, 13, 16, 17, 1] We propose a novel approach to solve the problem by constructing a foldover-free 2D triangular mesh transformation subject to hard positional constraints. The approach begins with an unconstrained planar embedding, followed by iterative constrained mesh transformations. At the heart of the approach are radial basis function (RBF)-based warping and longest edge bisection (LEB)-based refinement. The integration of the RBF-based warping and the LEB-based refinement provides a provably foldover-free and smooth constrained mesh warping, which can handle a large number of constraints and output a visually pleasing mapping result without extra smoothing optimization.

After the 2013 BIRS workshop at Banff, we have written up a paper from our research results and submitted it to a journal for publication. Currently we are working on an outstanding problem and some extensions. In particular, it is not clear how to modify the proposed framework to theoretically guarantee the global bijectivity of the constructed mapping. It is also very interesting and practically useful to extend the approach for generating constrained, smooth, and inversion-free volumetric mesh warping.

Gregory Smith:
A central challenge in geometric modelling is to interpolate or describe the shape of a figure from a finite set of data points. Extending the classical barycentric coordinates, Wachspress solve this problem for convex
polygons. Moreover, Warren shows that Wachspress’ coordinates are the unique rational barycentric coordinates of minimal degree. By reinterpreting the Wachspress’ coordinates as a rational map, Garcia-Puente and Sottile initiate the study of its image. Irving and Schenck analyze the image of the Wachspress map in the planar case, showing that the resulting surface is isomorphic to the image of the projective plane blown up at certain points related to the convex polygon. Using this and tools of combinatorial commutative algebra, they give a complete description for the vanishing ideal of the image. Inspired by the workshop, Corey Irving, Hal Schenck, Frank Sottile, and I have started investigating higher-dimensional Wachspress varieties. We already have a conjectural description for the singular locus of Wachspress threefolds. We hope to explicitly describe the defining equations and algebraic invariants of all Wachspress varieties.

References

Recent trends in algebraic geometry emphasize effective computation over transcendent theory. The theme of this paper is that from the perspective of geometric modeling this trend is largely misguided that for the purpose of geometric modeling the true role of algebraic geometry is insight not computation. Discover the world's research. 20+ million members. Projecting a sphere to a plane.

Outline. History. Geometers. v. t. e. Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial Book Editions for Algebraic Geometry And Geometric Modeling. 1 results. All matches. Books. Study. Textbooks. Algebraic Geometry and Geometric Modeling. ISBN13 9783540332749. Out of stock. More Books ». COMPANY. About Chegg. Chegg For Good. College Marketing. An edition of Algebraic geometry and geometric modeling (2006). Algebraic Geometry and Geometric Modeling (Mathematics and Visualization). 1 edition. by Mohamed Elkadi, Bernard Mourrain, Ragni Piene. ISBN 13. 9783540332749. Library Thing. Algebraic geometry can provide constructive tools for computation. Geometric modeling needs effective numerical methods. Classical projective geometry. Classical geometry was real and Euclidean. To get solutions to polynomial equations, imaginary numbers were introduced, and projective geometry in order to have stability of intersections. Complex projective geometry is much easier to work with than ane real geometry. For computers: the field \mathbb{Q}, for pictures the field \mathbb{R}, for proving theorems the field \mathbb{C}.