Moreover, although recent discussions have focused almost exclusively on boost-phase intercept (BPI), ascent-phase intercept (API) has significant operational merits that should not be dismissed wholesale. Indeed, our analysis suggests that the development of a dual BPI-API capability should be strongly considered for the reasons cited in this report. The first two paths, which start with exoatmospheric API early contingency options and end with endoatmospheric BPI systems, are sometimes called ‘grow down’ paths, implying that lower-altitude BPI may be pursued later through follow-on development. The final path, which starts with an early BPI capability, is called ‘direct.’ Boost-phase ballistic missile defense is alluring because rocket boosters are easy to detect and track, they are relatively vulnerable due to the large axial loads on a missile under powered flight, the entire payload (single or multiple warheads and midcourse penetration aids) may be destroyed in a single shot, and countermeasures to defeat boost-phase defense are more difficult to devise than. Boost-phase defense encompasses engagements during the time period when the threat booster is still accelerating. The midcourse defense layer can be divided into (1) ascent phase, when the threat system is engaged prior to apogee, and (2) descent phase, when intercept occurs after apogee. The term ‘early intercept’ is sometimes used to describe intercept after boost in the initial portions of the ascent phase of the threat system before apogee. Finally, terminal defense refers to engagements as and after warheads reenter the atmosphere and become subject to drag and reentry heating. Terms of