A Rising Tide Lifts All Boats: Raising, Communicating, and Enforcing Expectations in Online Courses

By Marie A. Revak, PhD

As an instructor new to the online environment, I carefully reviewed the syllabus and the requirements for the course discussions and assignments and incorporated the following ideas from Myers-Wylie, Mangieri & Hardy: a “what you need to know” document that includes policies about late work, formatting, source citations, grading and feedback, and the dangers of plagiarism; a separate “assignments at a glance” calendar that details due dates and submission instructions; a “frequently asked questions” thread in the discussion forum; detailed scoring rubrics for each assignment, and example assignments. As is typical in the online environment, my course was equipped with areas for announcements and discussions and a grade book with a place to post comments for individual students. I used all these formats to communicate with students about course requirements and provide detailed feedback.

From the beginning, some students submitted their assignments without reading any of my sage advice. About a third missed the deadline for the first assignment. Several assignments were missing key components, and some exhibited major formatting flaws. There was a flurry of questions in the discussion forum about the due date and format—answers to which could be found in the numerous documents I had posted. Student frustration mounted when I referred them to existing documents. Indeed, the instant gratification associated with the Internet has “trained students to expect help when they require it—on their schedule” (Creasman, 2012).

I provided feedback by electronically editing each assignment and returning the marked-up documents. I was discouraged when continued on page 2 >>
I noticed that students continued to make the same errors on subsequent assignments—proof that they had not incorporated my previous feedback. Had they even seen it? It occurred to me that I would need to find more innovative ways to communicate my expectations.

I have been able to raise expectations and improve the quality of work in my course by implementing the following practices.

Set a tone of “no excuses.” According to McKeachie (1994), when students know what to expect, they can be more productive. In addition to introducing themselves at the start of the course, I ask students to answer the following questions: (1) How will you make time for this course? and (2) What is your “plan b” for computer and/or Internet issues? When students answer these questions they are forced to think about potential issues and solutions before the class begins. Reading about how other students tackle these problems is also helpful.

Introduce another voice. Students listen to other students. During the first week of class, I post an announcement that summarizes advice collected from previous students from the preceding class. As a rule, this advice encourages students to keep up with the readings, follow instructions, work hard, and meet deadlines. Seasoned students will also advise new students to pay attention to the examples and rubrics. This advice is especially helpful to students who are fearful or easily discouraged (McKeachie, 1994). Students will have the opportunity to provide their own advice at the end of the course.

Force engagement with the information. Online students are pragmatic. They need a reason to seek information, especially information that might not directly relate to an assignment that carries a grade. I created an online scavenger hunt quiz based on the course logistics information and awarded extra credit points based on the quiz score. The quiz consists of 12 multiple-choice questions covering the topics of late work, due dates, grading, feedback, plagiarism, formatting, and the course textbook. Students are permitted to take the quiz as many times as they wish during the first week of class. Because my course is asynchronous, most students take advantage of the extra-credit opportunity and therefore become engaged and familiar with the information within the first week when it is convenient for them. Although the extra-credit points are minimal (six points out of 1,000 course points), most students like starting the course with a few extra points in the grade book.

Force engagement with feedback. Research supports corrective feedback as one of the most powerful ways of enhancing student achievement (Angelo & Cross, 1993; Marzano, Pickering & Pollock, 2001; McKeachie, 1994). But it is not the giving of feedback that helps students learn, but the acting on feedback (Chappuis, 2012). I provide feedback to students by electronically editing their individual documents and placing them in a special feedback thread in the discussion forum. One of my biggest disappointments was providing detailed feedback to students and having them make the same mistakes on subsequent assignments. I was spending hours providing feedback, but many students were not learning from my feedback. In fact, I was not...
even sure that they had found my feedback. To ensure that students find and open their marked-up assignments, I now include a feedback code on the second major assignment. The code consists of the student’s initials and a few numbers (for example, MR456). Students reply to me with their feedback code for a few extra credit points on their next assignment. Most students take advantage of this extra credit opportunity, therefore assuring me that they know where to find their marked-up papers.

Force engagement with peers. Most online courses require weekly discussion postings with responses to classmates. Indeed, “the best online instruction allows for students’ learning to be forged more through interaction with each other and less through instructor lecture” (Creasman, 2012). To encourage participation and ensure that students don’t tune out after they have submitted their minimum number of required postings, I require students to review their classmates’ comments and submit a revised, polished version of their original post. The revised version is posted at the end of the week and is the version that is graded. In addition to commenting on content, I ask peers to provide advice on spelling, grammar, and conventions. I also comment on student forum postings throughout the week. According to Bullen (1998), instructors need to allow adequate time for follow-up discussion and comments. McKeachie (1994) agrees; more comments and more specific comments lead to greater learning. Because the feedback for the discussion forum refers to the draft post, it occurs during and not after the learning, and therefore often improves the quality of assignments that are submitted at the end of the week (Chappuis, 2012).

Provide student exemplars. My course is project-based, and although the course syllabus describes the expectations and provides criteria for the projects, seeing an example of a well-done project will help, direct, and inspire students in their own projects. Kerr (2009) agrees and feels that exemplars support student success and contribute to the development of the learning community. The first time I taught the course, I created my own exemplars. Now that I have taught the course several times, I share actual student examples (with names removed) as exemplar projects.

Provide opportunities for student-to-teacher feedback. Halfway through the course, I ask students to provide me with feedback about how I might improve the course. I ask three questions: What should I start doing? What should I stop doing? What should I continue doing? (Angelo & Cross, 1993). I allow about a week for students to respond, then summarize the results and share with students via the discussion forum. At the end of the course, I ask students the same three questions and one additional question: What advice do you have for future students in this course? The mid-course and end-of-course feedback has helped me shape the course and make subtle changes. As the result of student feedback, I have simplified my late work policy and created an area in the discussion forum for students to share project ideas. I share students’ advice for future students and believe it is one of the first steps in setting high expectations for the incoming class.

Taken together, implementing the practices described above has helped to improve the quality of the work submitted by students in my classes by setting high expectations from the first day of class and maintaining high expectations throughout the course. By raising the tide, I have lifted all boats!

References

Creasman, P. (2012). *Considerations in online course design*. IDEA Paper No. 52. Manhattan: Kansas State University, Center for Faculty Evaluation and Development.

Marie A. Revak is a faculty member at Jones International University.
Online Learning 2.0 Turn Your Students into Teachers

By John Orlando, PhD

Teaching as learning

It’s been said that teaching is the best way to learn, and I believe it. When I had to teach a topic on the periphery of my knowledge, I needed to learn it better than I would if I was interested only in my own research. I needed to get underneath the material, filling in gaps in my knowledge that I might otherwise leave, in case I was asked about it by my students.

Education has traditionally gone from teacher to student. This is partly a leftover from the age when the university was a vault of information not available elsewhere. Teachers were truly walking repositories of knowledge.

But all that has changed. Now, nearly everything I teach is available elsewhere. More important, information can be preserved digitally. This means that students can become teachers by producing permanent course content for other students. This also means that students can produce course content for future classes, engaging in a conversation across generations of learners.

Student teaching modules turn around the traditional education model of the teacher having an understanding in his or her head, conveying that understanding to students, and measuring them on how well their understanding matches his or her own. Instead of encouraging students to “give back to the teacher what the teacher wants,” students must truly understand the material in order to synthesize it into a coherent teaching module. Student teaching modules force a level of understanding beyond what is needed to skate by on an exam.

Plus, because the teaching module is presented to classmates, rather than just the instructor, the student has a greater incentive to do well. We all elevate our act when we must perform before others. The paper that is seen only by the instructor carries little incentive to do well beyond a grade.

The power of online education is that the modules can now be preserved in a format that can be used with future students. Traditional online classes scrub out the student-generated content for the next group so that only the instructor’s contributions remain. Why is this so? A fundamental tenet of higher education is that knowledge is built on the work of former scholars. No professor writes without reference to what others have done. Yet this is precisely what we are expecting of our students when the work of prior students is wiped away for each new class.

Finally, we live in a world where digital communication is becoming a force in civic society. Understanding how to communicate in these new formats is becoming nearly as important to civic engagement and citizenship (dare I say more important?) as understanding how to write a college term paper.

Assignment format

I put students from my Medical Ethics course into groups of four and assign each group a medical ethics issue to teach to others via a digital learning module. I use this assignment in an upper-level course because the students have more experience with higher education teaching than do students in lower-level courses.

The project is assigned in the first week and due in the last week to give the groups plenty of time to organize, research, and create their module. While this is a face-to-face course, the method can be used in either online or face-to-face courses because the content is digital. I have the students post their modules to the class wiki, which grows from class to class.

Here are the basic assignment requirements:

- The module must take around 45 minutes to an hour for someone to go through.
- The module must include an assessment of learning.
- The module must include a list of good resources for further exploration.

To ensure that projects are moving forward, I require that students meet certain milestones during the semester. For instance, they need to have a first organizing meeting within two weeks, they need to have their module outlined by six weeks, etc. I also assign one group member to periodically report on group progress.

Once the material is put together and loaded on the wiki, I assign every member of the class one module that is not their own to go through. They must post a brief commentary on the module, answering questions such as Did you understand it? How did you do on the assessment? and Do you have further questions?

The groups then present a short overview of their modules to the entire class at the end of the semester. While students already have access to the modules, I like to have students present a summary of what they did to allow them to show pride in what they created. This summary is done during a regular lecture in my face-to-face courses, and via Google+ Huddles, or by

Continued on page 6 >>
Online Teaching Strategies to Promote Career Management Skills in STEM Disciplines

By Lawrence O. Flowers, PhD and Lamont A. Flowers, PhD

Recent reports indicate a decline in undergraduate student enrollment in science and engineering fields as well as a decline in science, technology, engineering, and mathematics (STEM) professionals in the United States. Moreover, one of the existing challenges of science educators in the 21st century is to improve student awareness of STEM careers in a way that leads to retention in science majors and substantive expansion of the STEM workforce in the future.

This article presents online instructional strategies that address career management objectives in science and engineering courses that may improve student interest in STEM occupations and participation in science-related careers.

Online pedagogical strategies that support career management

Career management is a multifaceted process that includes establishing specific career goals and developing a realistic strategy for achieving those goals. The information below presents helpful instructional strategies that can be employed by online STEM faculty to address career management objectives in science and engineering courses.

The following instructional approaches focus on exploration of career choices, effective career planning and decision making, and improving student academic confidence through active learning techniques.

1. Use STEM career decision models and assignments. Making an informed STEM career decision is an extremely important part of the career management process. While there are many career decision models in the literature, most models involve self-assessment of strengths, weaknesses, personality, skills, and career interests (Luzzo & Severy, 2008). In the beginning of the course, online instructors could present a basic STEM-related career decision model to students and assign at least one career decision-making assignment (e.g., career decision-making worksheet) that would be due at the end of the semester. Very helpful online STEM assessment devices can be found at http://vcc.asu.edu/sca.

A brief career-decision reflection essay could also be assigned early in the semester to allow students the opportunity to document their thoughts and perceptions throughout the STEM career-decision process and may expand the impact of the overall assignment. Moreover, an understanding of students’ professional interests could also assist in internship and graduate and professional school selection. The Internet is an excellent source for career decision-making worksheets and user-friendly activities.

Once located, career decision-making worksheets can be modified for your students and course.

2. Design online assignments that allow students the opportunity to explore specific science and engineering careers. These assignments could include career-related essays in which students analyze the advantages and disadvantages of specific science careers. Hall et al. (2011) notes that increasing exposure to a wide array of STEM fields may expand students’ understanding of occupational prospects beyond the traditional science careers (e.g., physician, engineer) and will assist in the ability of students to determine interest in a science-related field.

Career exploration assignments could also involve interviews with STEM professionals. Interview questions would be designed to elucidate specific educational prerequisites, professional training requirements, personal motivation for career engagement, beneficial professional organizations, and essential scientific communication skills necessary for career entry and advancement. Interviews would help students develop a better understanding of STEM-related careers and may enhance networking opportunities, which are also essential to improving students’ career interests. Additionally, discussion boards and synchronous video-based STEM-career student presentations utilizing Skype or another online communication software tool would allow online students the opportunity to present career exploration assignment information to their peers and allow students the opportunity to ask questions of their peers about different careers, in real time.

3. Incorporate innovative online problem-based learning (PBL) assignments. PBL is an effective pedagogical method that is designed to enhance critical-thinking skills and problem-solving skills (Ferreira & Trudel, 2012). Problem-based learning is a student-centered approach to present career exploration information to their peers and allow students the opportunity to ask questions of their peers about different careers, in real time.

Continued on page 8 >>
Effectively Teaching Large-Enrollment Online Classes

By Errol Craig Sull

Whether teaching MOOCs (massive open online courses), a class whose enrollment has unexpectedly peaked, or courses where schools have upped the enrollment caps, it’s crucial there be as much a connection as possible between the students and instructor. Sure, students can still learn from a class if the instructor is in the shadows—and some students simply assume this will be the case in a large enrollment class—but the learning experience will be much better when the instructor puts in the effort to stay involved, active, engaged, and visible in the course. Indeed, the large-enrollment class can offer nearly the same intimacy as a smaller one, but it does take some effort. Here’s how.

A “Welcome to the course!” announcement that addresses the large class is crucial. While not being able to view the student roster, students quickly get a sense of how many are in their class through the week-one discussion postings and any questions in a common instructor office area—and this can be intimidating. By mentioning the size of the course, but then reassuring the students that each person has your attention and no one will feel left out, you are able to minimize any angst a large-enrollment class may cause some students. And always interject high energy and enthusiasm—it’s contagious.

The more “global” information available on day one of class, the fewer questions and problems from students. Have a resource area beyond what comes standard in your course to offer students information they will probably need. This could include audio, audio/visual, screenshots, and printed information ranging from how to make an attachment to the proper way to integrate and format citations to the best websites on course topics to little tech (computer) tips you’ve picked up along the way. And always add to these from questions students raise in your course that were not initially addressed.

Have a bank of assignment and other responses at the ready—but always with the ability to individualize them. Students need feedback on their assignments, and the more detailed the feedback, the better they will learn. Writing each one individually takes much time. So develop a bank of feedback responses that you can copy and paste onto student assignments—but always with the option of personalizing them when necessary. Other class postings, such as student emails, discussion postings, and class emails, can also come from a bank, but never allow these to become so sanitized that it appears your individuality and interest in the course are missing, and always be sure these precast

Continued on page 7 >>

<< From Page 4

video in an online course.

Preparation

Students need some fairly specific guidance on format and expectations for this assignment, as it’s somewhat far afield from what they are used to. Though we tend to assume that our students are experts at all things digital, their understanding is actually deep and narrow. While they might be able to text and negotiate video game environments at warp speed, they are not familiar with loading content onto a wiki. So I created screencasts on how to load the wiki to teach them the technology. I also go through potential resources for content delivery and assessment.

Students are free to pick the software that they want to use for the assignment. One of my favorite content hosting sites is VoiceThread (http://voicethread.com/). It’s easy to use and allows others to post comments directly to the content. Most students will use this site, although some will use voice-over PowerPoint and even animation sites such as Voki (www.voki.com/) and Xtranormal (www.xtranormal.com/). I like how the assignment allows them to be creative in their uses of resources.

When it comes to assessment, most students use a simple quizzing system such as the Jeopardy game from Dianne Jones’ Parade of Games in PowerPoint site (http://facstaff.uw.edu/jonesd/games/), or multiple-choice tests that can be built on dozens of sites.

Take a look at the examples in this video, and consider how you might make students into teachers in your own classes www.magnapubs.com/newsletter/oc1305video.

John Orlando has spent 15 years in online education, mostly learning by trial and error. He helped develop and lead online learning programs at the University of Vermont and Norwich University and has taught faculty how to teach online as well as to use technology in their face-to-face teaching.
Develop an announcement that lists all external resources, such as tutoring, advisors, and IT contacts. There will be questions and concerns beyond your control; looking for the right contact information to address these takes time if you don’t already have them. Thus, anticipate what might go wrong, drawing from previous classes. From this, make a list of “Frequent Questions and Problems That I Can’t Handle—But These Folks Can.” On this list include all school sources that can be of assistance to students.

Use your students as “teacher’s aides” in discussion and elsewhere. This is a resource many instructors overlook, but it can save much time in the large-enrollment classroom and give additional input and information to a course. Ask students to be on the lookout for student questions (for example) that might appear in a common area. Explain that while you may not see a question when it was posted at 3:10 a.m., a student might, and if he/she can help, to please do so. (Always indicate you will be following up to be sure the response is correct.) Also, set up discussion threads where students can post websites and other helpful information from which the class can benefit. This equates to greater student engagement, a richer stock of course materials, and less time required from you.

Integrate the dynamics of a large-enrollment course into discussions and email. Large-enrollment classes can easily translate to an exceptional amount of enthusiasm, discussion postings, excellent assignments, and information/questions from which all can benefit. Mention this in the “Welcome to the course!” announcement, but also remind students of it occasionally so they can look for and embrace the advantages of being in an online course with a large number of students.

Do not offer high enrollment as an excuse for you missing deadlines or for delays in responding to students. When a student looks to you as his or her instructor, it is one-on-one, not with the idea in mind that you’ll get to the student when time permits because the class is so large. Make it a point to meet deadlines associated with assignments, discussions, and responses so that each student receives the proper amount of interaction with you.

Make regular use of audio or audio/video. A great way to get a personalized message to a large number of students at once is through audio or YouTube-type videos. This enables you to provide that all-important tone of voice (if only audio) and nonverbal communication, along with visual “props” (your office, a pet, posters, etc.) that personalize you, resulting in a stronger student-instructor bond.

Set aside at least two days per week for office hours, and, if possible, hold a weekly live chat or webinar. No matter how much information you post in class, students will still have questions. And the larger the class, the more questions you’ll receive. Although you need to handle each question as it comes along, the number of questions may be reduced if students know there are designated hours each week—split over two days—when you are immediately available. (Instant messaging is a great way to do this.) In addition, live chats or webinars allow for a large number of students to be reached at once, while also letting you present that all-important positive, upbeat, and enthusiastic tone of voice and nonverbal communication (if using a webcam).

Use the strategy of “you are the only student in my class” to help create a solid and energetic bond with students. It can become easy to post announcements, send emails, and answer questions in an impersonal, almost robotic tone, which can create a disconnect between you and the students. Use language and information that give the impression that you are taking care in what you write or say—as if you are addressing only one student. This approach pulls in students to what you are communicating, resulting in more focus on the information and a positive reaction to you as instructor.

Remember: Bob Dylan, Lady Gaga, the Bolshoi Ballet, Cirque du Soleil, the Boston Pops Orchestra, and the Metropolitan Opera are successful with large audiences because they give ‘em what they want, they give ‘em what they need.

Errol Craig Sull has been teaching online courses for 19 years and has a national reputation in the subject, writing and conducting workshops on distance learning, with national recognition in the field of distance education. He’s currently putting the finishing touches on his second online teaching text. Please write him at errolraigsull@aol.com with your suggestions and comments—he always responds!
instructional method involving cooperative learning, student projects, instructor facilitation, active learning, open-ended problems, presentation of conclusions, and student evaluation (e.g., case studies and virtual laboratories). Since PBL cognitive outcomes are particularly germane to scientists and engineers, the successful completion of PBL assignments may improve career self-efficacy and stimulate student motivation to pursue a STEM field.

4. Integrate career planning software (e.g., System of Integrated Guidance and Information [SIGI3]) in the STEM online course. This would further support career management outcomes. Career plans are designed to explicate aims, benefits, potential obstacles, realistic timelines, and methods for achieving career goals. Career plan worksheets can also be found on the Internet and incorporated into the online course.

5. Include scientific or academic skills-based webinars in the online course. A webinar is a synchronous educational presentation that allows for active student participation. Although some webinars can be accessed for a nominal fee, many can be accessed at no cost to the institution or online instructor. The use of webinars that focus on laboratory skills, career management skills, contemporary scientific advances, or scientific study skills could also positively affect students’ academic outcomes and contribute to higher career self-efficacy.

6. Use pre-tests and post-tests to evaluate student comprehension following academic interventions. Administering online career-related qualitative questionnaires or quantitative surveys (e.g., Iowa Vocational Purpose Inventory) is an excellent way to assess student knowledge. The Iowa Vocational Purpose Inventory measures student occupational preparedness, career goals and interests, and motivation to pursue a specific occupational field (Hood & Zerwas, 1997). A mixed-methods approach can be employed to determine if STEM career management interventions were successful.

Most science textbooks lack information about specific careers. To lessen the effects of this informational deficiency, online instructors could supplement textbook information by creating instructional information designed to educate students about careers in science that correspond to specific science course content. Online instructors could also construct online quiz questions and online exam questions to probe student understanding of the supplementary career-related material. It is clear that incorporating the above career-based pedagogical strategies in every online STEM course could have positive synergistic effects on students’ STEM career management skills.

As with any instructional strategy, online instructors must provide clear and detailed instructions to students to promote their success. Additionally, a carefully designed rubric must be created. The rubric must present measurable performance-based criteria in order to adequately assess student proficiency. We contend that exposing students to a wide range of career choices and exposing them to career-decision and career-planning activities in online science courses is an effective strategy to improve student career engagement, commitment to pursue a science career after graduation, and future employment in STEM fields.

Furthermore, additional research is warranted to explore the factors that influence STEM career choice. Additional research will lead to the development and implementation of student-centered online approaches designed to attract students to the STEM workforce.

References

Acknowledgements

This work was supported by a grant funded by the National Science Foundation (HRD-811728).

Lawrence O. Flowers is an assistant professor of microbiology at Fayetteville State University. Lamont A. Flowers is the distinguished professor of educational leadership at Clemson University.
Although the reputations of political science departments usually rise and fall with the tide of their university's reputation, if their own faculty perform well but are in a sea of mediocre departments, they can enjoy a better reputation than the rest of the university. And if they perform poorly, their reputation can suffer even if they find themselves in a university whose faculty have a high overall scholarly reputation. But our analysis suggests that the university's reputation and resource commitment set the broad context for departmental success and account for the bulk of the difference.

In the age of "big data," ThreatMetrix recognizes enterprises are collecting and sharing unprecedented amounts of information. The company suggests companies should be proactive by self-enforcing standards that help protect this data. Specifically, it advises the use of trusted identity networks that use strict anonymization practices. For transaction-based solutions, such as those in the retail space, another strategy would be to develop context-based authentication methods capable of establishing the credibility of each attempt and transaction. The saying "it takes a village" applies to the individual officers were reduced to communicating horizontally with each other, using their personal mobile phones, while the backups did not have proper equipment or any instructions as to what they should do. Camden, Lewisham, Catford, Croydon, Kilburn. And the extended timespan of the Pembury riot, the crowd largely inactive, palpably wondering what to do, for long intervals while the cops gathered their forces nearby, undermines any appeal to "impulse" or the vagaries of mob irrationality. No: this riot came from the start with its own conscious justifications, and sustained them through the course of a primary conflict with the cops. The murder of a black man, poor conditions, unemployment: diverse explanations were given. Talent. Society. Reporting. A rising tide lifts all boats Advancing the audit profession by raising the bar on audit quality. It's difficult to overstate the importance of audit's role in contributing to a properly functioning capital market and strong, sound economy. Yet, the heart of the role—quality, transparency, and observing the highest of standards will always remain. Adds Kakoullis: "Today's increasingly complex business environment requires that the audit be more dynamic and insightful."